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ABSTRACT

Diseased skeletal muscle expresses mononuclear cell infiltra-
tion in the regions of perimysium. Accurate annotation or
segmentation of perimysium can help biologists and clini-
cians to determine individualized patient treatment and al-
low for reasonable prognostication. However, manual per-
imysium annotation is time consuming and prone to inter-
observer variations. Meanwhile, the presence of ambiguous
patterns in muscle images significantly challenge many tra-
ditional automatic annotation algorithms. In this paper, we
propose an automatic perimysium annotation algorithm based
on deep convolutional neural network (CNN). We formulate
the automatic annotation of perimysium in muscle images as
a pixel-wise classification problem, and the CNN is trained
to label each image pixel with raw RGB values of the patch
centered at the pixel. The algorithm is applied to 82 diseased
skeletal muscle images. We have achieved an average preci-
sion of 94% on the test dataset.

Index Terms— Perimysium annotation, muscle, convo-
lutional neural network

1. INTRODUCTION

Recently histopathological study has shown growing evi-
dence that skeletal muscle extracellular matrix (ECM) affects
the normal function of muscle [1]. ECM is very important
in the maintenance, transmission and repair of the muscle
fibre force. Idiopathic Inflammatory Myopathies (IIMs), a
rare form of muscle inflammatory disease that causes muscle
weakening and pain, exhibits clinical manifestation in the
regions of perimysium [2]. Figure 1 shows typical mononu-
clear cell infiltration in the perimysium region in one sample
Hematosin & Eosin (H&E) stained diseased skeletal mus-
cle image. Accurate delineation of the perimysium region
can provide support for infiltration characterization, which is
helpful for effective diagnosis and prognosis of the muscle
disease. However, manual annotation in a large number of
digitized muscle specimens is time consuming, laborious and
subjective.
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Fig. 1. An example of H&E stained skeletal muscle image.
Left: The cross sectional area of the skeletal muscle scan
cropped at 4x magnification. The green/red box indicates a
muscle region with/without perimysium, respectively. Mid-
dle: The zoomed-in regions of sample regions shown in Left.
Right: Several zoomed-in small image patches displayed in
Middle. These patches are used as training samples for our
learning model. Green boxes indicate positive samples and
red boxes represent negative samples.

Computer-aided algorithms provide a promising strat-
egy for automated annotation on histopathology images.
Xu et al. [3] have proposed a context-constrained multiple
instance learning (MIL) method to achieve pixel-wise seg-
mentation/anotation on colon histopathology images. Due to
the high variability of the patterns shown in histopathology
images, it is difficult to design an effective feature descriptor
for automatic image analysis. In recent years, there is an
encouraging evidence that learned representation of biomed-
ical images might perform better than the handcrafted fea-
tures [4, 5, 6]. Cruz-Roa et al. [7] have proposed a deep
neural network for automated basal cell carcinoma cancer
detection, and a unified deep representation learning model is
reported [8] for automatic prostate MR image segmentation.
Recently, a deep convolutional neural network [9] has been
successfully applied to mitosis detection in breast cancer
histopathology images. However, none of these methods deal
with digitized muscle specimens, which are significantly dif-
ferent from other types of histopathology images. Since some
of the perimysium regions are very similar to other ECMs, it
is difficult to achieve automatic perimysium annotation.

In this paper, we present an automated perimysium an-
notation approach on skeletal muscle images, which is based
on a deep convolutional neural network (CNN), as shown in
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Fig. 2. The architecture of our proposed CNN model.

Figure 2. The problem is formulated into a pixel-wise classi-
fication framework, where a CNN model is trained with raw
RGB values of image data and automatically learns a set of
hierarchical features for classification. In order to introduce
scale invariance, we feed the CNN model with multi-scale
training image inputs. In the testing stage, the learned CNN
model is applied to the images in a sliding window, differen-
tiating pixels in the perimysium region from others to achieve
automatic annotation. To the best of our knowledge, this is
the first attempt to automate the analysis of muscle pathology
of perimysium. This approach provides effective perimysium
annotation results, which can serve as a basis for further im-
age analysis of skeletal muscle disease.

2. METHODS

Given a set of training RGB image patches Ii ∈ Rr×c×3, i =
1, ..., N with dimensionality r× c for each of the 3 channels,
we propose to learn a CNN-based mapping function to pre-
dict the class labels. The patches with center pixels located
in the perimysium regions are labeled as positive, otherwise
negative (see Figure 1).

2.1. CNN Architecture

Convolutional neural network (CNN) is a feed-forward net-
work which has alternating layers of convolution and max-
pooling, followed by some fully connected layers [10]. It can
provide progressively abstract representation of the input with
the increment of the number of layers. The CNN structure
used in our implementation is summarized in Table 1. The
convolutional layer calculates a set of output feature maps by
performing multiple 2D filters on input images. Formally, de-
fine M l

j as the j-th output feature map of the l-th layer, we
have the following equation

M l
j = f(

∑
i

M l−1
i ∗Kl

ij + blj), (1)

where Kl
ij and blj represent convolutional kernel and bias cor-

responding to the i-th input feature map and the j-th out-
put feature map, respectively. The f(x) is a nonlinear acti-
vation function, referred to as rectified linear units (ReLUs)
[11]f(x) = max(0, x). It enables fast model training and po-
tentially improves the classification performance. We chose a

Table 1. The structure of the CNN used in our algorithm.
Layer No. Layer Type Feature Map Kernel Size
1 Input 32 × 32 ×3 -
2 Convolutional 28 × 28 × 6 5 × 5
3 Max-pooling 14 × 14 × 6 2 × 2
4 Convolutional 12 × 12 × 12 3 × 3
5 Max-pooling 6 × 6 × 12 2 × 2
6 Fully-connected 64 × 1 -
7 Output 2 × 1 -

kernel size of 5× 5 for convolution layers based on the input
image size of 32 × 32. A larger kernel size would decrease
the discriminative power of the network, and too small would
give ambiguous feature representation.

Max pooling layer is used to preform dimension reduction
by keeping the most promising value in the given subregion.
It also introduces local shift and translation invariance, and
corresponds to a kernel of size 2 × 2 without overlapping in
our design. Fully-connected layer consists of ReLUs aiming
to learn global feature representation. The last (Output) layer
is a fully-connected layer with a softmax function, which is
used for final classification.

2.2. CNN Model Training and Testing

In our implementation, each pixel is represented by a patch
centered at this specific pixel. Therefore, the patch size plays
a significant role in the automatic perimysium annotation.
Learning hierarchical features with multi-scale input images
have shown to improve the classification performance [12].
In order to incorporate scale invariance into the classifier,
we train the model with a multi-scale version of the input
images. Specifically, we crop image patches from the whole
slides with different window sizes at the same pixel location:
28× 28, 32× 32, and 64× 64, and upsample or downsample
these patches to have a unified size of 32× 32.

The model is trained using backpropagation with stochas-
tic gradient descent [13], which locally minimizes the nega-
tive log-likelihood objective function. In order to achieve fast
convergence in training, all the image patches are normalized
to have zero mean and unit variance. The learning rate is an
important parameter in our model. It is initialized as 0.1 and
decayed by a factor of (1 + d× t) within each epoch, where
d is equal to 10−3 and t is the epoch index, until the vali-



                    

Fig. 3. Automatic perimysium annotation results using our CNN based method.
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Fig. 4. Comparison between the proposed CNN (CNN1) and
its variation (CNN2). Left: the ROC curves; Right: box plot
for PFP.

dation error stops improving with the current learning rate.
This early stopping strategy is an important step to avoid over-
fitting [14]. Batch size and the momentum are kept fixed dur-
ing the training, as 100 and 0.5, respectively.

In the testing stage, automatic annotation is achieved by
applying the CNN model to new images using a sliding win-
dow of 32× 32. The patches are normalized in a similar way
as training. The patches partially outside the image bound-
aries are ignored. The softmax layer outputs the probabilities
that each pixel is located in the perimysium or other regions.
We predict patch labels by choosing the category associated
with a higher probability.

3. EXPERIMENTAL RESULTS

The proposed method is evaluated both quantitatively and
qualitatively using 82 skeletal muscle images (roughly 1100×
700), which are cropped at 4x magnification from 39 Hematosin
& Eosin stained whole slides cross section biopsy scans.
These slides represent two types of muscle diseases: Der-
matomyositis (DM) and Polymyositis (PM), which exhibit
different ranges of perimysium infiltration. The perimysium
regions in the images are manually annotated as ground truth.
Approximately 75% of the images are randomly selected for
training and cross validation, and the remaining 25% is used
for testing. From the training images, in total, 312000 square
patches are generated for training and 78000 for validation.
Figure 3 shows the automatic annotation on two sample im-

Fig. 5. The automatic annotation results using different al-
gorithm. Top-left: The proposed CNN; Top-right: LSVM
[15]; Bottom-left: LSVML [16]; Bottom-right: LBT [17].
The yellow ellipses overlaid on the image indicate that the
narrow perimysium regions can be successfully annotated by
the proposed CNN, however, other methods failed to detect
these thin perimysium regions which are are marked with red
ellipses.

ages, where the perimysium regions are accurately annotated
using green color in the muscle images.

In the first set of experiments, we evaluate different struc-
tures of CNN. For comparison, we have trained another
deep convolutional neural network (CNN2) by removing the
first fully-connected layer of the proposed framework. We
evaluate the pixel-wise classification for quantitative analy-
sis, and the receiver operating characteristic (ROC) curves
for the proposed CNN (CNN1) and its variation (CNN2).
The quantitative experimental results are displayed in Fig-
ure 4. Area under the curves (AUCs) observed for CNN1
and CNN2 are 0.98 and 0.99, respectively. In addition, Fig-
ure 4 also shows the percentage of falsely classified pixels:
PFP = (NFP+NFN )

Ntotal
where NFP , NFN , and Ntotal repre-

sent the number of false positive, false negative, and total
pixels, respectively. We can see that CNN2 performs slightly
better than CNN1 which has a more deeper architecture, and
this might be due to the limited training dataset.

In addition to the comparison of different CNN structures,
we also compare the CNN based methods with two state of



Table 2. Summary of the evaluation compared with ground truth on CNN and other methods.

Methods
Precision Recall F1-score

Mean± std Max Min 80% Mean± std Max Min 80% Mean± std Max Min 80%

CNN1 0.94± 0.04 0.99 0.85 0.99 0.87± 0.10 0.99 0.67 0.97 0.90± 0.05 0.97 0.80 0.96

CNN2 0.93± 0.07 0.99 0.76 0.99 0.92± 0.07 1.0 0.73 0.98 0.92± 0.04 0.98 0.80 0.96

LSVM 0.92± 0.06 0.99 0.80 0.97 0.76± 0.12 0.91 0.49 0.89 0.82± 0.08 0.94 0.63 0.90
LSVML 0.78± 0.15 0.97 0.41 0.90 0.87± 0.09 1.0 0.67 0.96 0.81± 0.08 0.91 0.59 0.87
LBT 0.79± 0.13 0.97 0.58 0.91 0.96± 0.04 1.0 0.84 1.0 0.86± 0.09 0.98 0.69 0.94

the arts: 1) A large-scale SVM [15] based classifier using raw
pixel intensities as feature vectors (LSVM), and locality bi-
nary pattern [16] (LSVML). 2) A logistic boosting classifier
using texton features (LBT) [17]. As one can tell, the deep
learning based models provide lower PFP errors than those
shallow learning methods. For quantitative comparison, we
calculate precision (P ), recall (R), and F1-score as

P =
NTP

(NTP +NFP )
, R =

NTP

(NTP +NFN )
, F1 =

2PR

(P +R)
,

(2)
where NTP denotes the number of true positive pixels. Fig-
ure 5 shows the qualitative automatic annotation results us-
ing different methods. As one can tell, our proposed CNN
based method can handle narrow perimysium regions which
present some challenges for other learning algorithm using
hand-crafted features. Table 2 shows the quantitative com-
parison among the CNN based methods and other state of the
arts. It is clear that our method and its variation consistently
provide the best classification results. This is attributed to the
fact that the proposed CNN models are an end-to-end learn-
ing method that can automatically learn hierarchical features
that are best suitable for automatic annotations.

4. CONCLUSION
We have presented an automated perimysium annotation ap-
proach in skeletal muscle images using convolution neural
network. In order to handle scale variations, multi-scale ver-
sions of input images are used for model training, and auto-
matic annotation is achieved by performing pixel-wise classi-
fication with a sliding window on testing images. The com-
parative experiments demonstrate the effectiveness of its su-
perior performance. Our method is a general learning frame-
work, which can be applied to other automatic image annota-
tion for microscopic image analysis.
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