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Abstract. Accurate segmentation of perimysium plays an important
role in early diagnosis of many muscle diseases because many diseases
contain di↵erent perimysium inflammation. However, it remains as a
challenging task due to the complex appearance of the perymisum mor-
phology and its ambiguity to the background area. The muscle perimy-
sium also exhibits strong structure spanned in the entire tissue, which
makes it di�cult for current local patch-based methods to capture this
long-range context information. In this paper, we propose a novel spatial
clockwork recurrent neural network (spatial CW-RNN) to address those
issues. Specifically, we split the entire image into a set of non-overlapping
image patches, and the semantic dependencies among them are modeled
by the proposed spatial CW-RNN. Our method directly takes the 2D
structure of the image into consideration and is capable of encoding the
context information of the entire image into the local representation of
each patch. Meanwhile, we leverage on the structured regression to assign
one prediction mask rather than a single class label to each local patch,
which enables both e�cient training and testing. We extensively test our
method for perimysium segmentation using digitized muscle microscopy
images. Experimental results demonstrate the superiority of the novel
spatial CW-RNN over other existing state of the arts.

1 Introduction

Many important morphological properties, such as the distribution of muscle
fibers and their nuclei with respect to the perimysium, are important biomark-
ers for early diagnosis of many muscle diseases [6]. To compute these spatial
morphological parameters, accurate and e�cient segmentation of perimysium is
an essential prerequisite. However, muscle perimysium often shares similar ap-
pearances to other structures in the muscle, such as endomysium, epimysium,
and blood vessels. The large variations in staining intensity, global structure,
and morphology further complicate the automated segmentation task.

Recently, deep learning based methods have achieved great success in object
detection and segmentation, among which many are mainly dominated by vari-
ations of the convolutional neural network (CNN) [10]. One popular strategy is
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Fig. 1. One exemplar architecture. Spatial CW-RNN and dense layer represent the
proposed spatial clockwork RNN and fully connected layer, respectively. Sweepings
in di↵erent directions are illustrated in spatial CW-RNN layer using colorful arrows.
Activations from four sweepings are concatenated together in the concatenation layer
as the global context information for each local patch. The mapping between the output
of dense layer and the predicted mask (overlaid on the original image) for each local
patch is illustrated using brown arrows.

applying sliding-window to local image patch either by classification [5] or regres-
sion [14]. This group of methods fails to exploit the global semantic information.
Recently, recurrent neural (RNN) network and it’s variations (gated recurrent
neural network (GRU) [3] and long short-term memory network (LSTM) [8])
have witnessed great success in modeling global semantic information in chain-
structured data. Both GRU [3] and LSTM [8] are proposed to handle the ex-
ploding or vanishing gradient issue of plain RNN with the cost of a heavier
computational load. Recently, the clockwork RNN (CW-RNN), which contains
even a smaller number of parameters than plain RNN, has been proposed in [9]
and proven e↵ective in modeling long-term dependency. CW-RNN separates the
hidden recurrent units into di↵erent groups, each runs their own computation
at specific, discrete clock period. Since only a portion of the modules are active
at each time step, it is more e�cient than plain RNN. Furthermore, it is also
shown to outperform RNN and even LSTM in various tasks [9].

Enormous e↵orts have been devoted to utilizing RNN on computer vision
tasks. Francesco [12] applies GRU [3] to sweep the images as one chain-structured
data but along four di↵erent directions to model the context information. Some
pioneering works [7,2] that exploit the potentials of multi-dimensional RNN in
semantic image segmentation have also achieved promising results. However, 2D
plain RNN [7] su↵ers from the exploding or the vanishing gradient problem for
large images, and 2D LSTM [2] contains much more parameters than 2D RNN,
which makes it ine�cient at the runtime, and sometimes over-fit can happen
especially when the amount of training data is limited.

In this paper, we propose a 2D spatial clockwork RNN which extends the
applicability of chain structured CW-RNN [9] to 2D image domain for e�cient
perimysium segmentation. Our model directly exploits the 2D structure of im-
ages and encodes the global context information among local image patches.
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Di↵erent from [7,2], our model contains a much smaller number of parameters,
which makes it computationally e�cient and suitable for medical image segmen-
tation with limited training data. In our algorithm, instead of conducting inef-
ficient patch-wise classification, we integrate the structured regression [14] into
the proposed algorithm. This allows us to use non-overlapping stride in both
training and testing stages. Extensive experimental results demonstrate the ef-
fectiveness and e�ciency of our proposed model. To the best of our knowledge,
this is the first work to propose a 2D spatial CW-RNN that achieves promising
results on biomedical image segmentation.

2 Methodology

2.1 Recurrent Neural Network Revisited

The recurrent neural network (RNN) is one type of neural network that is
equipped with recurrent connections, which enable the network to memorize
past input patterns. For the simple RNN (SRNN), at each time step, it’s current
hidden state ht is a non-linear transformation of the current input xt and the
hidden state ht�1 from the last step. The output ot is directly connected to ht.
Mathematically, those relationships can be expressed by the following equations:

ht = f(Wxt +Uht�1 + b
h

), (1)

ot = g(V ht + b
o

), (2)

where f(.), g(.) represent the nonlinear activation functions,W andU are weight
matrices connecting input units to hidden units, and hidden units to themselves,
respectively. V is the weight matrix connecting hidden units to the output units.
b
h

and b
o

represent the bias terms for the hidden and output layer, respectively.
SRNN is usually trained with a discriminative objective function using the

back propagation through time (BPTT) algorithm [13]. However, the fact that
the computed gradients of SRNN are either exploding or vanishing when T be-
comes large hinders the SRNN from learning long-term temporal dependencies.
Instead of introducing gated connections [3,8] to complicate the model, clock-
work RNN (CW-RNN) [9] addresses the long-term dependency issue by using
a clever trick. Specifically, the hidden units h are partitioned into M modules
(hm for i = 1, ...,M), each is of size k and associated with a clock (or temporal)
period T

i

2 {T1, ..., TM

}. The total length of the hidden units is hid = M ⇥ k.
At each time step t, the neurons in module i will be updated only when t sat-
isfies (t mod T

i

) = 0. Units corresponding to slower rates are thus capable of
preserving long-term information. In addition, connections between hidden units
are restricted that faster modules can only receive information from slower ones
and not vice-versa, this mechanism further reduces the total number of active
weights.
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2.2 Spatial Clockwork RNN

Since there are no existing sequences presented in static images, the aforemen-
tioned CW-RNN is not directly applicable to our application. To ameliorate this
problem, we extend the CW-RNN to a two-dimensional domain, in which cur-
rent state can receive information from it’s predecessors in both row and column
directions. In order for the spatial CW-RNN to process the image, all image
patches need to be sorted to an acyclic sequence.

Specifically, we maintain one sub-hidden state for both row and column di-
mension, denoted as bh and eh, which are composed together as the hidden states
H = [bh, eh]. Denote respectively the weights matrix connecting the current

hidden states to it’s row and column predecessor as bU and eU , which are split
into four hid ⇥ hid block matrices; W connecting the input units to hidden
units is partitioned into 2 input dim ⇥ hid blocks-columns; the bias bh is also

evenly separated into 2 groups: bU =

 
bU (1,1) bU
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(2,1) bU
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!
, eU =
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�
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�
. Each block matrix bU

(m,n)
, eU
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�
. Recall that each sub-hidden state bh and eh is partitioned

into M module, each runs at specific temporal rate. Denote i, j 2 {1, ...,M}
as the modules index, u 2 {1, 2} matrix identifier, and (r, c) as the time-
step. For brief narrative, we define the following general matrix placeholders:

H(r,c)
i

=
⇣
bh(r,c)
i

eh(r,c)
i

⌘
, bU

u

ij

=

 
bU (u,1)
ij

bU
(u,2)

ij

!
, and eU

u

ij
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eU (u,1)
ij

eU
(u,2)

ij

!
. The updating

rule for the i-th module of bh (similar case for eh) at time step (r, c) is given as:

bh(r,c)
i

=

8
><

>:

f(x(r,c)W 1
i

+
MP
j=i

⇣
H(r�1,c)

j

bU
1

ij

+H(r,c�1)
j

eU
1

ij

+ b1
i

⌘
) if (r mod T

i

) = 0,

bh(r�1,c)
i

otherwise.

(3)

Note that the aforementioned method only considers the 4 connected neigh-
borhood, namely, every patch only receives information from it’s left, right, up
and lower adjacent patches. But it is trivial to extend our method to 8 connected
neighborhood. Both of the two cases are evaluated in the experiment part.
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2.3 Structured Prediction with Full Sweeping

Due to the temporal dependency property of spatial CW-RNN, each local patch
only receives context information from the region spanned by it’s predecessors.
However, in 2D images, each local patch is surrounded by both it’s predecessors
and postdecessors, we thus want the model to be aware of such bi-directional
context information. To this end, we sweep the input image (or feature map)
from four di↵erent corners (upper-left, lower-left, upper-right, lower-right) to
the opposite corners. For each local image patch, activations from four direc-
tional sweepings are concatenated together as the full-context representation,
which is fed to the successive layers to produce the final prediction output. The
illustration of this process is shown in Figure 1.

Now, we omit the module index i in H(r,c) and define H(r,c)
& ,H(r,c)

. ,H(r,c)
%

and H(r,c)
- as the total hidden activations (containing all the modules) for each

directional sweeping at time step (r, c). The output O(r,c) after applying one
dense layer to those concatenated features can be computed as:

O(r,c) = f(
X

d

0

H(r,c)
d

0 W
d

0 + b), (4)

where d

0 2 {&,.,%,-} denotes di↵erent sweeping direction. Please note that
dense layer is applied individually across all the time step, and local patches
corresponding to di↵erent time steps share the same weights W

d

0 .
Given a set of training data {(X

i

,Y
i

)}N
i=1, where N is the total number of

training data, X
i

is the i-th training image and Y
i

is the corresponding mask
label. Let R

i

and C

i

denote the total number of local patches in row and column
dimension for the i-th pair of training data. Denote ⇥ as the model’s parameter,
and  as our model. The objective function defined on {(X

i

,Y
i

)} is given by:

L( (X
i

;⇥),Y
i

) =
1

2

RiX

r=1

CiX

c=1

���Y (r,c)
i

�O(r,c)
i

���
2

2
,

(5)

where both of Y (r,c)
i

and O(r,c)
i

are reshaped into a vector to computed the loss.
Our proposed spatial CW-RNN is inherently capable of capturing semantic

information in the entire image. Meanwhile, it is totally end-to-end trainable and
can be optimized using standard BPTT algorithm [13]. It takes an input image
with any size and produces the result mask with the same size as the input.

3 Experimental Results

Dataset and Implementation Details: The proposed spatial CW-RNN has
been extensively evaluated using 348 H&E stained skeletal muscle microscopy
images (each image roughly contains 300⇥ 600 pixels). All the images are man-
ually annotated and double checked by two neuromuscular pathologists. In total
150 images are chosen for testing and the rest for training. Both qualitative and
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quantitative experiments are reported. The detailed architecture of our method
is summarized in Table.1. The first layer is a dense layer, and the next 4 spatial
CW-RNN layers are used to sweep the input feature map in four di↵erent direc-
tions. The size of the none-overlapping patches is set to 10⇥ 10⇥ 3. The model
is trained using RMSprop algorithm with a learning rate of 0.003. M and k in
Section 2.2 are 4 and 48, respectively. Time period is set to exponential series:
T

i

= 2i�1. Our model is implemented in python with Theano [1] and Keras [4].
The experiments are performed on a PC endowed with an Intel Xeon E5-1650
CPU and an NVIDIA Quadro K4000 GPU.

Table 1. The network architecture. Dense represents the fully connected layer applied
individually to every time step. SCR represents spatial CW-RNN, where the arrow
indicates the sweeping direction. The Inputs row specifies the layer ID of each layer’s
inputs. Layer 7 takes the concatenation of the output from layer 3,4,5 and 6 as input.

Layer ID 1 2 3 4 5 6 7 8
Layer Input Dense SCR& SCR. SCR% SCR- Dense Dense
Size 300 100 384 384 384 384 100 100

Inputs - 1 2 2 2 2 [3,4,5,6] 7

Evaluation metrics: Denote m

ij

as the number of pixels of class i labeled as
class j, t

i

=
P

j

m

ij

as the number of pixels of class i. The following metrics are
computed (IU represents region intersection over union):

(1) Mean accuracy (MA): (1/2)
P

i

m

ii

/t

i

.
(2) Average IU (AIU): (1/2)

P
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)).
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P
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t

i

)
P

i

(t
i

m

ii

/(t
i

+
P

j

m

ji

�m

ii

)).
(4) Precision (P), recall (R) and F1 score.

Comparison with Other Works: We compare our method with several vari-
ations of other deep learning based frameworks, e.g., multi-layer perception
(MLP), convolutional neural network (CNN). The detailed performance com-
parison are given in Table 2. SCW-RNN(4) and SCW-RNN(8) denote the pro-
posed method for 4 and 8 connected neighborhood, respectively. CNN-nips is
the famous architecture utilized in [5] to segment neuronal membranes, which
consists of 4 convolutional layers and 4 max-pooling layers followed by two fully
connected layer. This network uses a large input window size (95 ⇥ 95) to cap-
ture the context information. We also compare our method with U-NET [11],
an end-to-end CNN architecture. To demonstrate our method’s capability of
handling spatial context information, a plain MLP network that shares similar
architecture to our model, denoted as MLP-10 are considered for comparison as
well. We also try a larger window size (48 ⇥ 48) for MLP network, denoted as
MLP-48.

As we show in Table 2, both versions of the proposed method, SCW-RNN(4)
and SCW-RNN(8), achieve the best overall performance compared with others.
It is obvious that the utilization of more spatial context information in SCW-
RNN(8) leads to performance improvement than SCW-RNN(4), especially in
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Testing image Ground truth CNN-nips MLP-48 Ours(8)

Fig. 2. Perymisum segmentation results on three challenging skeleton muscle images
which show strong global structure and demonstrates a lot of appearance similarity
between perimysium (true positive) and endo/epimysium (false positive). Comparing
with other methods, our results show much better global consistency because it can
capture global spatial configurations.

terms of recall and F1 score. MLP-10, which does not consider such spatial con-
text information across local patches, produces a lot of false positive evidenced
by the low precision and F1 score. MLP-48, which has a larger receptive field
outperforms MLP-10 with a large margin. CNN-nips, which uses a really large
window size (95⇥95), achieves comparative results as ours, but its running time
is almost 100 times slower than our method. Although for certain architecture,
fast scanning can be utilized to remove redundant computations of convolution
operation, it is not applicable to our case, which conducts patch-wise normal-
ization. U-NET [11], which does not invoke patch based testing, is also very
e�cient, but it produces a much lower F1 score and AIU than ours, one of the
possible reasons is that we do not apply aggressive data augmentation in all of
our experimental settings.

For quantitative comparison, some challenging images with segmentation re-
sults overlaid on the original image are shown in Figure 2. It can be observed that
our method produces the most accurate results with much better global consis-
tency. This further provides evidences that our proposed spatial CW-RNN has
strong capability to learn the global context information, which is the key to
di↵erentiate perimysium from endomysium, epimysium, and blood vessels.

4 Conclusion

In this paper, we propose a formulation of the novel 2D spatial clock-work re-
current neural network and pave the way to utilize RNN architecture to process
2D biomedical image data. Our spatial CW-RNN is totally end-to-end trainable
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Table 2. The quantitative comparative results of muscle perimysium segmentation
results. T represents the average running time (measured in second).

P R F1 score MA AIU WIU T
MLP-10 0.768 0.803 0.776 0.883 0.787 0.447 7.36
MLP-48 0.805 0.82 0.804 0.897 0.811 0.453 22.14

U-NET [11] 0.764 0.792 0.761 0.869 0.774 0.442 1.7
CNN-nips [5] 0.834 0.855 0.84 0.916 0.841 0.463 319.8
SCW-RNN(4) 0.854 0.843 0.842 0.909 0.842 0.462 2.6
SCW-RNN(8) 0.836 0.866 0.845 0.918 0.844 0.462 3.6

and capable of encoding the global context information into the features of each
local image patch, which tremendously improves the performance. In addition,
we utilize the structured output for each local image patch, making it e�cient
for both training and testing.
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